A Case Study in Implementing Standardized Restoration Monitoring in Mobile Bay Subwatersheds

Renee Collini

National Monitoring Conference

May 4th, 2016

Introduc

❖"promote

Compreh

❖Non-regul

Many stak

al Estuary

he system"

MP)

Committees

Science Advisory Committee

Experts

20 voting members; 30-40 participants

Estuary Status and Trends

Monitoring subcommittee

Watershed Management Planning

Why a Monitoring Framework?

Lots of restoration & planning

Different people doing different things

Different focus areas/issues

Why a Monitoring Framework?

What are the baselines?

Are the efforts affecting change?

Needed standardize and scalable monitoring

What is in the Framework? Recommendations

Sampling

Parameters

Timing & Frequency

Location

Methodology

Efficiency

Data storage & usage

Implementation

MOBILE BAY NATIONAL ESTUARY PROGRAM

Mobile Bay Subwatershed Restoration Monitoring Framework

Science Advisory Committee: Monitoring Working Group, 2015

Deterrents to Monitoring

Expense

Expertise

Time

People

Spread the job around = better chances??

D'Olive Sampling

Parameters cover:

Water quality

Sedimentation & flow

Habitat quality & quantity

12 Agencies & 27 individuals working on data collection

480 water quality samples taken daily

60 parameters sampled in 76 days annually

Positives

Lot of data, little money

Burden sharing

Strengthen inter-agency relationships

Mechanisms to continue

Community buy-in

Challenges

Coordination

- Between monitoring groups
- Between monitoring & restoration efforts

Timing Redundancy

Funding/Resources

Reporting

Data Management: Storage & Metadata

Moving Forward

Other Watersheds

Adjust for lessons learned
Restoration schedule
Reporting schedule
Metadata template
Public data repository

Maintain long-term monitoring

Summary

Already existing networks

Big undertaking

Requires great people

Cost effective

Specific considerations

S

Quantify changes

Acknowledgements

Parameters: Water Quality Sondes

Samples are taken at 15 min intervals at 5 stations throughout the watershed: 1 at the end of a large restoration, the other 4 at downstream cumulative sites.

Depth

Temperature

Dissolved Oxygen

Conductivity

Turbidity

рН

Parameters: Sedimentation & Flow

Samples are taken 3 times annually: Once during baseflow and twice during rain events. These samples will be plugged into a sediment transport model that has already been developed for the watershed. Samples taken at strategic downstream sites and cumulative sites.

Samples Taken

Total Bed Sediment

Total Suspended Sediment

Bed Sediment Transport (using a BSRD)

Stream Discharge

Nutrients

рΗ

Conductivity

Turbidity

Temperature

Dissolved Oxygen

Rates Calculated

Bed Sediment Transport Rates

Suspended Sediment Transport Rates

Total Sediment Transport Rates

Bed Sediment Loading

Parameters: Freshwater Wetlands

Acreage
Wetland Rapid Assessment Protocol
(WRAP)
Wildlife Utilization
Wetland Overstory/Shrub Canopy
Wetland Vegetative Ground Cover
Adjacent Upland Support/Wetland Buffer
Field Indicators of Wetland Hydrology

Water Quality Input and Treatment Systems

Floristic Quality Index (FQI)

List of all species

List of all native species

Total # of species

Total # of native species

Percent tolerant species

Percent intolerant species

Percent wetness

Parameters: Streams & Riparian Buffers

Stream Health Index

Percent Ground Cover of Organic Matter

Buffer Width

Presence of Non-natives

Bank Erosion Hazard Index (BEHI)

Basal Area

Structural Diversity of the Canopy

Bank Root Density

Parameters: Intertidal Marshes & Flats

Acreage

Hydrogeomorphic Approach (HGM)

Wetland Patch Size

Adjacent Land Use

Mean Marsh Width

Wave Energy Exposure

Aquative Edge

Hydrologic Regime

Nekton Habitat Diversity

Wildlife Habitat Diversity

Mean Percent Cover Emergent Marsh Vegetation

Vegtation Height

Percent Cover of Invasive or Exotic Species

Percent Cover by Woody Plant Species

Weltand Indicator Status

Parameters: D'Olive Bay

Samples conducted monthly from April - November, and every other month the rest of the year at three locations throughout the bay: High, Mid, and Low.

Photosynthetically Active Radiation

Salinity

Temperature

Dissolved Oxygen

Chl-a

Turbidity

Total Suspended Solids

Colored Dissolved Organic Matter